89 research outputs found

    Improving Christofides' Algorithm for the s-t Path TSP

    Full text link
    We present a deterministic (1+sqrt(5))/2-approximation algorithm for the s-t path TSP for an arbitrary metric. Given a symmetric metric cost on n vertices including two prespecified endpoints, the problem is to find a shortest Hamiltonian path between the two endpoints; Hoogeveen showed that the natural variant of Christofides' algorithm is a 5/3-approximation algorithm for this problem, and this asymptotically tight bound in fact has been the best approximation ratio known until now. We modify this algorithm so that it chooses the initial spanning tree based on an optimal solution to the Held-Karp relaxation rather than a minimum spanning tree; we prove this simple but crucial modification leads to an improved approximation ratio, surpassing the 20-year-old barrier set by the natural Christofides' algorithm variant. Our algorithm also proves an upper bound of (1+sqrt(5))/2 on the integrality gap of the path-variant Held-Karp relaxation. The techniques devised in this paper can be applied to other optimization problems as well: these applications include improved approximation algorithms and improved LP integrality gap upper bounds for the prize-collecting s-t path problem and the unit-weight graphical metric s-t path TSP.Comment: 31 pages, 5 figure

    Hitting Sets when the Shallow Cell Complexity is Small

    Full text link
    The hitting set problem is a well-known NP-hard optimization problem in which, given a set of elements and a collection of subsets, the goal is to find the smallest selection of elements, such that each subset contains at least one element in the selection. Many geometric set systems enjoy improved approximation ratios, which have recently been shown to be tight with respect to the shallow cell complexity of the set system. The algorithms that exploit the cell complexity, however, tend to be involved and computationally intensive. This paper shows that a slightly improved asymptotic approximation ratio for the hitting set problem can be attained using a much simpler algorithm: solve the linear programming relaxation, take one initial random sample from the set of elements with probabilities proportional to the LP-solution, and, while there is an unhit set, take an additional sample from it proportional to the LP-solution. Our algorithm is a simple generalization of the elegant net-finder algorithm by Nabil Mustafa. To analyze this algorithm for the hitting set problem, we generalize the classic Packing Lemma, and the more recent Shallow Packing Lemma, to the setting of weighted epsilon-nets.Comment: Accepted by WAOA202

    The submodular joint replenishment problem

    Get PDF
    The joint replenishment problem is a fundamental model in supply chain management theory that has applications in inventory management, logistics, and maintenance scheduling. In this problem, there are multiple item types, each having a given time-dependent sequence of demands that need to be satisfied. In order to satisfy demand, orders of the item types must be placed in advance of the due dates for each demand. Every time an order of item types is placed, there is an associated joint setup cost depending on the subset of item types ordered. This ordering cost can be due to machine, transportation, or labor costs, for example. In addition, there is a cost to holding inventory for demand that has yet to be served. The overall goal is to minimize the total ordering costs plus inventory holding costs. In this paper, the cost of an order, also known as a joint setup cost, is a monotonically increasing, submodular function over the item types. For this general problem, we show that a greedy approach provides an approximation guarantee that is logarithmic in the number of demands. Then we consider three special cases of submodular functions which we call the laminar, tree, and cardinality cases, each of which can model real world scenarios that previously have not been captured. For each of these cases, we provide a constant factor approximation algorithm. Specifically, we show that the laminar case can be solved optimally in polynomial time via a dynamic programming approach. For the tree and cardinality cases, we provide two different linear programming based approximation algorithms that provide guarantees of three and five, respectively.National Science Foundation (U.S.) (CAREER Grant CMMI-0846554)United States. Air Force Office of Scientific Research (Award FA9550-11-1-0150)SMA GrantSolomon Buchsbaum AT&T Research Fun

    GILP: An Interactive Tool for Visualizing the Simplex Algorithm

    Full text link
    The Simplex algorithm for solving linear programs-one of Computing in Science & Engineering's top 10 most influential algorithms of the 20th century-is an important topic in many algorithms courses. While the Simplex algorithm relies on intuitive geometric ideas, the computationally-involved mechanics of the algorithm can obfuscate a geometric understanding. In this paper, we present gilp, an easy-to-use Simplex algorithm visualization tool designed to explicitly connect the mechanical steps of the algorithm with their geometric interpretation. We provide an extensive library with example visualizations, and our tool allows an instructor to quickly produce custom interactive HTML files for students to experiment with the algorithm (without requiring students to install anything!). The tool can also be used for interactive assignments in Jupyter notebooks, and has been incorporated into a forthcoming Data Science and Decision Making interactive textbook. In this paper, we first describe how the tool fits into the existing literature on algorithm visualizations: how it was designed to facilitate student engagement and instructor adoption, and how it substantially extends existing algorithm visualization tools for Simplex. We then describe the development and usage of the tool, and report feedback from its use in a course with roughly 100 students. Student feedback was overwhelmingly positive, with students finding the tool easy to use: it effectively helped them link the algebraic and geometrical views of the Simplex algorithm and understand its nuances. Finally, gilp is open-source, includes an extension to visualizing linear programming-based branch and bound, and is readily amenable to further extensions.Comment: ACM SIGCSE 2023 Manuscript, 13 pages, 5 figure

    Prize-Collecting TSP with a Budget Constraint

    Get PDF
    We consider constrained versions of the prize-collecting traveling salesman and the minimum spanning tree problems. The goal is to maximize the number of vertices in the returned tour/tree subject to a bound on the tour/tree cost. We present a 2-approximation algorithm for these problems based on a primal-dual approach. The algorithm relies on finding a threshold value for the dual variable corresponding to the budget constraint in the primal and then carefully constructing a tour/tree that is just within budget. Thereby, we improve the best-known guarantees from 3+epsilon and 2+epsilon for the tree and the tour version, respectively. Our analysis extends to the setting with weighted vertices, in which we want to maximize the total weight of vertices in the tour/tree subject to the same budget constraint

    Approximation algorithms for facility location problems. In:

    Get PDF
    Abstract We present new approximation algorithms for several facility location problems. In each facility location problem that we study, there is a set of locations at which w e m a y build a facility such a s a w arehouse, where the cost of building at location i is fi; furthermore, there is a set of client locations such a s stores that require to be serviced by a facility, and if a client at location j is assigned to a facility at location i, a cost of cij is incurred. The objective i s t o determine a set of locations at which to open facilities so as to minimize the total facility and assignment costs. In the uncapacitated case, each facility can service an unlimited number of clients, whereas in the capacitated case, each facility can serve, for example, at most u clients. These models and a number of closely related ones have been studied extensively in the Operations Research literature. We shall consider the case in which the assignment costs are symmetric and satisfy the triangle inequality. For the uncapacitated facility location, we give a polynomial-time algorithm that nds a solution within a factor of 3.16 of the optimal. This is the rst constant performance guarantee known for this problem. We also present approximation algorithms with constant performance guarantees for a number of capacitated models as well as a generalization in which there is a 2-level hierarchy of facilities. Our results are based on the ltering and rounding technique of Lin & Vitter. We also give a randomized variant of this technique that can then be derandomized to yield improved performance guarantees

    Improved Bounds on Relaxations of a Parallel Machine Scheduling Problem

    Get PDF
    We consider the problem of scheduling n jobs with release dates on m identical parallel machines to minimize the average completion time of the jobs. We prove that the ratio of the average completion time of the optimal nonpreemptive schedule to that of the optimal preemptive schedule is at most 7}{3}, improving a bound of (3- 1}{m}) due to Phillips, Stein and Wein. We then use our technique to give an improved bound on the quality of a linear programming relaxation of the problem considered by Hall, Schulz, Shmoys and Wein
    • …
    corecore